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This document and the methods described within it have been prepared by, and remain
the property of, National Highways. While all reasonable care has been taken in the
preparation of this document, it cannot be guaranteed that it is free of every potential
error.

Recipients of this document should not assume that themethods are appropriate for their
purposes. If you use themethods described within this document, it is your responsibility
to ensure you are applying them correctly and appropriately. Use of the methods is at
your own risk. National Highways cannot be held responsible or liable for any losses,
damages, costs or expenses arising from or in any way connected with your use of this
document and methods.
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1 Foreword

Our roads play a vital part in people’s lives: connecting people to their work, family and
friends. We want to make sure every person gets to where they want to go, safely and
reliably. That’s why we prioritise the safety of people who travel and work on our roads
above everything else.
We can’t eliminate every risk from our road network, or from our work. But we can
recognise those risks, assess them, and do everything we can to protect people from
them. That includes ensuring the way that we use the data collected on our network
helps us to make decisions about improving it.
Agreeing robust principles for how we analyse data and use statistics is key. In this
report we describe statistical methods that we propose can be used to compare road
traffic collision rates and casualty rates.
We have developed methods for calculating confidence intervals for both collision and
casualty rates, and for comparing collision and casualty rates using hypothesis tests.
These methods help people to interpret the statistics appropriately, and to not jump to
conclusions when observed differences may be due to natural variability in the data
rather than a difference in safeness. As far as we are aware, there are no existing
methods available to compare casualty rates in this way.
During the development of these methods, we sought advice and feedback from the
Department for Transport, the Methodology Advisory Service of the Government
Statistical Service and Professor Jonathan Tawn of Lancaster University. However,
while the proposed methods have been carefully developed, they are not yet finalised.
We want our methods to be scrutinised and reviewed by the statistical community. We
welcome further feedback on the methods described in this document
Through this work we look to contribute to delivering our ambition that no one should
be killed or injured when travelling on our roads.

Mark Clements
Chief Analyst
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2 Introduction

The aim of this document is to describe proposed confidence interval and hypothesis
testing methods. These can be used by National Highways, and others, to compare
road traffic collision and casualty rates derived from STATS191 data.

These methods have been developed in response to the Office of Road and Rail
(ORR) quality assurance of all lane running motorway data report [13]. This noted that
’undertaking significance testing on the headline figures [casualty rates] in future would
help explain the levels of uncertainty around the results. We recommend that this is
developed’ and ’Including information about the level of uncertainty associated with the
high-level statistics [overall casualty rates for different road types], through statistical
significance testing, would add important context to any conclusions’. However, the
proposed methods have wider applicability beyond only comparing motorway types.
For example, they could be used to compare collision and casualty rates of any two
roads or road sections, or of a single road from year to year.

We have developed these methods to be used with collision and casualty rates
derived from data collected using the STATS19 system, managed by the Department
for Transport. That is, a collision is defined as one which occurs on the public highway,
involves at least one vehicle, becomes known to the police within 30 days, and causes
personal injury. This necessitates that at least one casualty arises from every collision
– this dataset does not record damage only road traffic collisions.

In the remainder of this document, we describe our proposed methods to compare
collision rates and casualty rates of two roads, which we call Road 1 and Road 2. Note
that these could equally be two road types or a single road in two consecutive years.
We then show a worked example of applying these methods to fictitious data, and
finish with some guidance on important things to consider when using these methods.

2.1 Engagement and feedback

During the development of these methods, National Highways sought advice and
feedback from the Department for Transport, the Methodology Advisory Service of the
Government Statistical Service, and Professor Jonathan Tawn of Lancaster University.
Alternative approaches were considered for many of the methods outlined in this
publication, and we are content with the methods we are proposing.

However, while the proposed methods have been carefully developed, they are not yet
finalised. National Highways welcomes further feedback on the methods described in
this document. We are keen to hear from you if you uncover a problem with our
proposed methods or can suggest an alternative approach which would be a
substantial improvement. However, at this stage in the process we are not seeking
feedback which would lead to only minor improvement. Feedback can be given to
networkanalysisandstatistics@nationalhighways.co.uk by the end of August 2022.

1https://www.gov.uk/government/collections/road-accidents-and-safety-statistics
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2.2 Natural variability

Before describing the proposed methods in the remainder of this document, we first
clarify where the uncertainty in collision and casualty rates arises. We assume that the
statistics we work with – that is the number and rate of road traffic collisions and the
number and rate of the resulting casualties – have been correctly recorded. Therefore,
in this case uncertainty does not arise from partial observation of events, for example
as it does when working with survey data collected from a sample of individuals.
Instead, uncertainty arises from natural variability. That is, the fundamental
unpredictability of the natural world and, in particular, of rare events like road traffic
collisions [15].

Due to this natural variability, we can treat the statistics – for example the observed
collision rate of a road - as a single estimate of an underlying hypothetical quantity that
we cannot measure directly – for example the ‘true’ underlying collision rate of a road.

Suppose we have observed road traffic collision rates of two different roads, say a rate
of 5 casualties per hundred million vehicle miles travelled on Road 1 and a rate of 10
casualties per hundred million vehicle miles travelled on Road 2. We can easily say
which of these casualty rates is larger: these are just numbers and 10 is larger than 5.
However, the question we are actually interested in answering is which of the
underlying casualty rates is larger. Considered along with other evidence, the answers
to these types of questions helps us draw conclusions about the underlying safeness
of the roads.

3 Proposed methods for comparing road traffic
collision rates

The Poisson distribution is already used by both the Department for Transport (DfT) [7]
and National Highways [8] to model road traffic collisions. Based on this statistical
model and the assumption that the road traffic level is sufficiently large, currently a
Z-test is used to calculate a 𝑝-value to statistically compare underlying collision rates.
This Z-test is also known as a chi-squared test with 1 degree of freedom. In the
following section, we describe the statistical methods we propose to compare the
number of collisions that do not make the assumption that the road traffic levels are
sufficiently large. We then follow by describing how confidence intervals for the
underlying collision rate can be calculated using this statistical model. We conclude
this section by describing how a formal hypothesis test can be conducted to determine
whether there is sufficient evidence to suggest that the underlying collision rates of two
roads are different.
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3.1 Statistical model

We assume that road traffic collisions occur according to a non-homogeneous Poisson
process [11] with the rate dependent on the observed road traffic. As for the existing
Z-test approach, the collisions are assumed to be independent; this means that the
occurrence of one collision has no influence on the occurrence of another collision.
The independence assumption is thought to be valid in most cases. We use maximum
likelihood techniques [5] to estimate the underlying collision rates.
In the existing Z-test approach, it is assumed that daily counts of collisions follow a
Poisson distribution. This implies that there is a constant expected daily rate of road
traffic collisions through time. On the other hand, we assume that road traffic collisions
occur according to a non-homogeneous Poisson process; this implies that the rate of
collisions is not constant. These are different starting points, but ultimately lead to the
same statistical distribution for the number of collisions, as under our assumption it can
be shown that the daily number of collisions still follows a Poisson distribution, but with
a rate dependent on the daily vehicle miles observed. We feel the non-homogeneous
Poisson process better justifies the assumption of the Poisson distribution for the
number of collisions given the level of road traffic, as when we have loooked at data,
we see that the rate of collisions is not constant.
For Road 𝑖, we have data collected over a time period during which 𝑁𝑖 collisions are
observed and the amount of road traffic observed is 𝑣𝑖 vehicle miles. The observed
collision rate, 𝑅𝑖, is given by:

𝑅𝑖 = 𝑁𝑖
𝑣𝑖

. (1)

We assume that the rate at which collisions occur is governed by the intensity function,
𝜆𝑖(𝑣), where 𝑣 is the road traffic. Therefore, the number of collisions for Road 𝑖 given
the level of road traffic follows the following Poisson distribution:

𝑁𝑖 ∼ Poisson(∫
𝑣

0
𝜆𝑖(𝜈)𝑑𝜈) . (2)

We re-parameterise the Poisson distribution in terms of 𝛾𝑖, the underlying expected
number of collisions per vehicle mile, where 𝛾𝑖 = 1

𝑣𝑖
∫𝑣𝑖
0 𝜆𝑖(𝜈)𝑑𝜈 so that

𝑁𝑖 ∼ Poisson(𝛾𝑖𝑣𝑖).
Given the two roads that we wish to compare, Road 1 and Road 2, we calculate
estimates for the underlying collision rates using maximum likelihood techniques as
follows. If we assume the number of collisions observed on Road 1 and Road 2 are
independent, the likelihood function is given by:

𝐿(𝛾1, 𝛾2) = 𝑒−𝛾1𝑣1(𝛾1𝑣1)𝑁1

𝑁1!
𝑒−𝛾2𝑣2(𝛾2𝑣2)𝑁2

𝑁2! . (3)

Assuming the underlying collision rates of Road 1 and Road 2 are different, the
maximum likelihood estimate for Road 𝑖 is given by ̂𝛾𝑖 = 𝑁𝑖

𝑣𝑖
for 𝑖 = 1, 2. The maximum

likelihood estimates provide a single value for the estimate of the underlying collision
rates. In the next section we describe how to compute confidence intervals to provide
a measure of uncertainty in these estimates.
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3.2 Confidence intervals

We propose calculating a confidence interval for ̂𝛾𝑖 using a parametric bootstrap
method [4], given by Algorithm 1 in Appendix A.1.

After calculating the confidence intervals, we may find ourselves in one of three
situations illustrated in Figure 1. Figure 1a shows that the confidence intervals do not
overlap, which may indicate that the underlying collision rates for Road 1 and Road 2
are different. Figure 1b shows large overlap between the confidence intervals, which
may indicate that the underlying collision rates for Road 1 and Road 2 are similar.
Finally, Figure 1c shows some overlap between the confidence intervals. Here, in
particular, a formal statistical hypothesis test can help us determine if the evidence
suggests that the underlying collision rates are different. In the following section, we
state the hypotheses considered and describe how to compute a 𝑝-value to test the
hypothesis.

Road 1

Road 2

6 7 8 9
Collision rate

Confidence intervals: no overlap

(a) Situation 1

Road 1

Road 2

6 7 8 9
Collision rate

Confidence intervals: overlap

(b) Situation 2

Road 1

Road 2

6 7 8 9
Collision rate

Confidence intervals: slight overlap

(c) Situation 3

Figure 1: An illustration of the three situations that could be observed when the confidence intervals for
the underlying collision rates are computed. The points show the observed collision rates and the lines
indicate the extent of the confidence intervals.

3.3 Hypothesis test

Following the observations made using the confidence intervals, we can formally test
the null hypothesis that the underlying collision rates are the same for Road 1 and
Road 2 as follows. The null hypothesis, 𝐻0, and alternate hypothesis, 𝐻1, are defined
as:

𝐻0 ∶ 𝛾1 = 𝛾2
𝐻1 ∶ 𝛾1 ≠ 𝛾2. (4)

There are several test procedures described in the literature that can be used to test
this hypothesis, including the Z-test or chi-squared test with 1 degree of freedom
described previously. However, several of these test procedures rely on the asymptotic
distribution of the test statistic [12]. When levels of road traffic are low, the distribution
of the test statistic may be far from the asymptotic distribution of the test statistic,
meaning that the 𝑝-values produced by these methods may be misleading. The C-test
proposed by Przyborowski & Wilenski [14] does not rely on asymptotic distributions but
did not perform as favorably as the numerical approach (E-test) proposed by
Krishnamoorthy and Thomson [9]. However, what is known by the Neymann-Pearson
lemma [2] is that the optimal way to obtain a test statistic in the single parameter
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hypothesis testing case is to use the likelihood ratio as the basis of constructing a test
statistic. Therefore, we conduct a likelihood ratio test and propose calculating a 𝑝-value
using a Monte-Carlo approach [1]. Appendix A.2 describes this calculation in detail.

In this section we have shown how we propose to model the number of collisions given
the road traffic, estimate the underlying collision rates, measure the uncertainty in
these estimates and conduct a hypothesis test to determine whether there is sufficient
evidence to suggest that collision rates are different. In the following section, we
consider how to model the number of casualties and measure uncertainty in the
estimates of the underlying casualty rates.

4 Proposed methods for comparing casualty rates

Casualties are a result of road traffic collisions. Therefore, the total number of
casualties is dependent on the total number of collisions and the number of casualties
that result from each collision.

Let 𝑋𝑖,𝑗 be the observed number of casualties that result from collision 𝑗 of Road 𝑖.
Recall that the observed number of collisions for Road 𝑖 is 𝑁𝑖, and the observed road
traffic is 𝑣𝑖. The observed casualty rate for Road 𝑖, 𝑄𝑖, is dependent on the number of
collisions and the number of casualties, 𝐶𝑖 = ∑𝑁𝑖

𝑗=1 𝑋𝑖,𝑗 as follows:

𝑄𝑖 = 𝐶𝑖
𝑣𝑖

=
∑𝑁𝑖

𝑗=1 𝑋𝑖,𝑗
𝑣𝑖

. (5)

4.1 Statistical model

We assume that collisions occur according to a non-homogeneous Poisson process as
described in Section 3.1, so that the number of collisions given the level of road traffic
can be shown to follow a Poisson distribution. Since the number of casualties is given
by the sum of the number of casualties per collision, where the number of collisions is
assumed to follow a Poisson distribution, we assume that the number of casualties can
be well-modeled by a compound Poisson process [10]. Here, we assume that the
number of casualties per collision are independent and come from an unspecified
probability distribution.

In the development of these methods we have explored fitting a Poisson, a
negative-binomial and a geometric distribution to the number of casualties per collision
but found the fit of all distributions to be poor. We also explored truncating the
aforementioned distributions at zero and inflating the distributions at one [3], which
made only marginal improvements. We hypothesise that the poor fit of these
distributions could be due to several factors such as, but not limited to, the
combination of the types of vehicle involved in collisions and the number of occupants
in a vehicle. These factors suggest that a mixture of distributions may be more suitable
to model the number of casualties per collision parametrically. However, determining
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the exact form of the mixture distribution is non-trivial, and so we propose proceeding
with a non-parametric approach.

4.2 Confidence intervals

Confidence intervals for the underlying casualty rates of Road 1 and Road 2 can be
calculated to informally compare them. We propose doing this using a two step
process to simulate a compound Poisson process. Initially, the number of collisions
are simulated from a Poisson distribution. Then, the number of casualties per collision
is sampled from the observed casualties per collision distribution. The 100(1 − 𝛼)%
confidence intervals for the casualty rates are computed by taking the 𝛼

2 and 1 − 𝛼
2

simulated quantiles of the number of casualties and dividing through by the observed
road traffic. Full details of this are given by Algorithm 2 in Appendix B.1.

The relative positions of the confidence intervals of Road 1 and Road 2 give us some
idea whether the evidence suggests that the underlying casualty rates are different.
However, to formally compare the underlying casualty rates, we propose conducting
statistical hypothesis tests. To determine whether the evidence suggests that the
casualty rates for Road 1 and Road 2 are different, we need to compare both the
collision rates, using the methods proposed in Section 3, and the number of casualties
per collision for Road 1 and 2. In the following section we describe our proposed
approach for the latter.

4.3 Hypothesis test

In Section 3 we described a test procedure to determine if the evidence suggests a
difference in the underlying collision rates. The same methodology cannot by used to
compare the underlying casualty rates as the non-homogeneous Poisson process
used to model collisions assumes independence and that only one collision can occur
at any given level of road traffic. However, more than one casualty can result from a
single collision and the injuries are sustained at exactly the same time. The variability
in the number of casualties resulting from each collision means that, in comparison to
the variability in the number of collisions, the uncertainty in the total number of
casualties will be higher. Therefore, if the collision rate methodology was used to
compare the casualty rates, unrealistically confident conclusions could be drawn by
underestimating the uncertainty.

We assume that the number of casualties can be well modeled by the compound
Poisson process. It can be shown that the expected casualty rate is given by the
product of the expected collision rate, and the first moment of the number of casualties
per collision distribution. Therefore, when seeking evidence to compare the casualty
rates for two roads, it is sufficient to consider the expected collision rate and the first
moment of the number of casualties per collision distribution.

We have already discussed how to test for a difference in the underlying collision rates
and now focus on testing for a difference in the first moment of the casualty per
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collision distribution. That is, testing the following hypothesis:

𝐻0 ∶ 𝔼[𝑋1] = 𝔼[𝑋2]
𝐻1 ∶ 𝔼[𝑋1] ≠ 𝔼[𝑋2]. (6)

In Section 4.1 we discussed the difficulty in specifying a suitable parametric distribution
for the number of casualties per collision, hence we propose to use a non-parametric
approach to calculate a 𝑝-value.
These proposed methods assume that the collisions are independent, the number of
casualties per collision is independent and the number of collisions is independent to
the number of casualties per collision. The test statistic used in our our non-parametric
test is the absolute difference in the two sample means. Assuming the null hypothesis
holds, our non-parametric approach uses bootstrap re-sampling [4] without
replacement to estimate the distribution of the test statistic. The procedure proposed
to compute a 𝑝-value to test our hypothesis is given in Appendix B.2.

If only a small number of collisions for a road are observed, we do not have much
information about the distribution of the number of casualties per collision. In this case,
it may be that we cannot conduct this hypothesis test comparing the first moment of
the number of casualties per collision between two roads or that we should treat the
conclusions with additional caution.

Considering the outcomes of the two hypothesis tests together will determine whether
we should conclude that the underlying casualty rates are different. For example, if we
conclude that it is likely the underlying collision rates are different, but there is no
evidence to suggest that the first moment of the casualties per collision are different,
then we conclude that the underlying casualty rate is different. If we conclude that it is
likely the underlying collision rates are different and the first moment of the casualties
per collision are different then the underlying casualty rate could be different, or they
could be the same in the surprising case where the two differences act in opposite
ways and cancel out. In this case, we need to return to the confidence intervals
calculated to assess whether the evidence suggests that the underlying casualty rates
are different or not.

4.4 Formally combining 𝑝-values

In Section 3 we proposed a hypothesis test for the difference in the underlying collision
rates between the two roads, and in Section 4.3 we proposed how to test for a
difference in the first moment of the casualties per collision. We then proposed using
the outcomes of those two individual hypothesis tests to draw conclusions about the
underlying casualty rates. In this section we describe a method for formally combining
the information from the hypothesis tests described previously to produce a single
𝑝-value. Note that this is still not a single 𝑝-value to test differences in casualty rates
directly.
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The test considers the following hypotheses:

𝐻0 ∶ 𝛾1 = 𝛾2 and 𝔼[𝑋1] = 𝔼[𝑋2]
𝐻1 ∶ (𝛾1 ≠ 𝛾2 and 𝔼[𝑋1] = 𝔼[𝑋2]) or

(𝛾1 = 𝛾2 and 𝔼[𝑋1] ≠ 𝔼[𝑋2]) or
(𝛾1 ≠ 𝛾2 and 𝔼[𝑋1] ≠ 𝔼[𝑋2]).

(7)

Here, the null hypothesis states that the underlying collision rate and the expected
number of casualties per collision are the same. The alternative hypothesis states that
at least one of them are different. We propose to use the method proposed by Fisher
[6] to determine a 𝑝-value for testing (7). Let the 𝑝-values obtained in Section 3 and 4
be denoted as 𝑝1 and 𝑝2 respectively. Then Fisher’s test statistic is given by,

𝑇𝐹 = −2 log(𝑝1) − 2 log(𝑝2). (8)

Under the null hypothesis, the test statistic follows a chi-squared distribution with four
degrees of freedom, 𝑇𝐹 ∼ 𝜒2

4, and hence a 𝑝-value for testing (7) can be easily
obtained.

If the 𝑝-value obtained from testing (7) is sufficiently small, we are inclined to believe
that there is a difference in at least one of the collision rates or first moments of the
number of casualties per collision distribution. This suggests that there is some
difference in at least one of the two underlying processes leading to casualties.

5 Worked example

Now that we have described our proposed methods for comparing the underlying
collision and casualty rates, we will apply these methods to a fictitious example.

Suppose that the observed statistics for Road 1 and Road 2 are given in Table 1 and
the histogram of the number of casualties per collision, the 𝑋𝑖,𝑗, are as shown in Figure
4. Note that these statistics are based on fictitious data simply for this worked example.

Table 1: Observed statistics of Road 1 and Road 2 for this example. Recall that 𝑁𝑖, 𝑣𝑖, 𝑅𝑖, 𝐶𝑖, 𝑄𝑖 and
�̄�𝑖 are the number of collisions, the road traffic, the collision rate, the number of casualties, the casualty
rate, and the observed first moment of the number of casualties per collision respectively.

𝑖 𝑁𝑖 𝑣𝑖 𝑅𝑖 𝐶𝑖 𝑄𝑖 ̄𝑥𝑖

1 117 25 4.680 204 8.160 1.744
2 382 58 6.586 726 12.517 1.901
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5.1 Comparing collision rates

We are first interested in determining whether there is sufficient evidence to conclude
that the underlying collision rates of Road 1 and Road 2, 𝛾1 and 𝛾2, are different. First,
we calculate confidence intervals for each collision rate, shown in Figure 2. The
confidence intervals do not overlap which may suggest that the underlying collision
rates for Road 1 and Road 2 are different. However, they are reasonably close so we
formally test the following hypotheses by conducting the likelihood ratio test:

𝐻0 ∶ 𝛾1 = 𝛾2
𝐻1 ∶ 𝛾1 ≠ 𝛾2. (9)

Using Monte-Carlo simulation, as described in Section 3, we calculate the 𝑝-value as
0.001 (to 3 decimal places). The small 𝑝-value indicates that we have sufficient
evidence to reject the null hypothesis and conclude that the evidence suggests the
underlying collision rates for Road 1 and Road 2 are statistically different. In this case,
the evidence suggests that the underlying collision rate for Road 2 is higher than the
underlying collision rate of Road 1.

Road 1

Road 2

0 2 4 6 8 10
Collision rate

95% Confidence interval for the collision rate

Figure 2: 95% Confidence intervals for each of the collision rates.

5.2 Comparing casualty rates

We are now interested in determining whether there is evidence to suggest that the
underlying casualty rates are different for Road 1 and 2. Initially, we calculate
confidence intervals for each casualty rate, shown in Figure 3. There is no overlap in
the confidence intervals which may suggest that the underlying casualty rates are
different. This seems plausible as we previously concluded the underlying collision
rates are likely to be different, and casualties arise from collisions.

Road 1

Road 2

0 2 4 6 8 10 12 14
Casualty rate

95% Confidence interval for the casualty rate

Figure 3: 95% Confidence intervals for each of the casualty rates.
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We now formally test for a difference in the first moments of the casualties per collision
distributions. Before conducting a hypothesis test on the first moments, we inspect the
observed number of casualties per collision for outliers. These could adversely affect
the conclusions of the hypothesis test. By eye, inspecting the histograms in Figure 4,
the number of casualties per collision appear similar for Road 1 and Road 2 and
without any large outliers. However, Road 2 does have a relatively small number of
collisions that result in five and six casualties, whereas all collisions for Road 1 result
in fewer than five casualties.

0.0
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Observed casualties per collision, Road 1

(a) Road 1
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(b) Road 2

Figure 4: Histograms of the number of casualties per collision for Road 1 and Road 2. The solid orange
vertical lines indicate the mean number of casualties per collision for each road and the dashed yellow
vertical lines indicate the pooled sample mean, where the mean is calculated using the number of
casualties per collision for both roads.

We test the following hypotheses using the non-parametric test described in Section 4,

𝐻0 ∶ 𝔼[𝑋1] = 𝔼[𝑋2]
𝐻1 ∶ 𝔼[𝑋1] ≠ 𝔼[𝑋2]. (10)

The 𝑝-value is 0.112 (to 3 decimal places). This relatively large 𝑝-value suggests that
there is not enough evidence to reject the null hypothesis. We cannot conclude that
there is a difference in the first moment of the casualties per collision for Road 1 and
Road 2.

Finally, we can combine the 𝑝-values as discussed in Section 4. The combined 𝑝-value
obtained is 0.001 (to 3 decimal places). This also helps us to conclude that there is a
difference in at least one of the underlying collision rates or the first moment of the
casualties per collision distributions.

Overall, all of this evidence taken together supports the conclusion that the casualty
rates for Road 1 and Road 2 are different.
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6 Guidance

In this section we provide some general guidance for using the methods proposed in
this document. We cover a broad range of topics that consider how the data is
collected, anomalous values that may affect the conclusions drawn, and how to ensure
that conclusions are not misleading.

Often, statistical methods cannot be simply used ‘out of the box’, but the practitioner
must make decisions that could affect the conclusions of the analysis. This is the case
for these proposed methods, and examples of such decisions will be discussed in
more detail in Sections 6.2, 6.3, and 6.4.

6.1 Observing a low number of collisions

The methods proposed in this document for comparing collision rates have been
selected to perform favorably in situations where few collisions have been observed.
However, there are still some cases where the proposed collision rate methods cannot
be used as presented in this document.

Consider the example where zero collisions are observed on Road 1. Here, the
estimate of the underlying collision rate for Road 1 will be zero. The probability mass
function for the Poisson distribution with rate equal to zero has point mass at zero,
meaning that the corresponding random variable will always take the value zero and a
confidence interval for the collision rate of Road 1 cannot be estimated. Providing at
least one collision is observed on Road 2, confidence intervals for ̂𝛾2 can be calculated
to determine how close the interval lies to zero. Further, conducting the hypothesis test
will formalise the comparison between the collision rates of Road 1 and Road 2
despite observing zero collisions on Road 1.

When zero collisions are observed, we cannot calculate confidence intervals for the
casualty rate for the same reasons described above. We also cannot conduct a
hypothesis test on the first moment for the number of casualties per collision as no
information will exist for this statistic. Further, when the observed number of collisions
is only small, we have little information about the distribution of the number of
casualties per collision. Therefore, when a low number of collisions has been
observed it is likely to not be appropriate to use the methods as presented in Section 4
or, if used, the conclusions should be treated with additional caution.

6.2 Outliers in the number of casualties per collision

Sometimes the data may contain unusually large observations for the number of
casualties per collision. These outliers should be investigated. Suppose a high
number of casualties per collision were observed as a consequence of an extreme
weather event. Then, the estimate of the casualty rate may be biased by this event. It
should be carefully considered whether some feature of the road could have reduced
or increased the effects of this event, and what the purpose of the analysis is.
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Depending on the conclusions drawn, it may be or may not be appropriate to remove
outliers. Consider the following example.

Suppose a high number of casualties were observed as a result of heavy snowfall. If
the road was at a high altitude, then high snowfall events may be common. While it
may not be possible to change the altitude of a road, there may be some other
interventions that could prevent collisions that could reduce the casualty rate, such as
road closures for example. Here, removing the outliers could lead to missed
opportunities to improve safety. Conversely, if the road was not at a high altitude and
the heavy snowfall was a one-off event, and the analysis was not aiming to understand
the safety impact of the snowfall, then removing the outliers may be appropriate.

We acknowledge that we cannot describe all possible scenarios. In scenarios where it
is not clear, it may be sensible to conduct the analysis with and without the outliers.

6.3 Data collection time period

We assume that the collisions occur according to a non-homogeneous Poisson
process. Ultimately, this allows us to assume that the collision rate can vary over time,
which we have observed in data during the development of these methods. It also
seems to be a reasonable assumption as there are many temporal factors, such as the
weather and daylight hours, that may impact collisions. However, this means that the
time intervals that we compare should be thought about carefully. Ideally, they should
be the same. Consider the following examples.

Figure 5 shows an example where the collision intensity functions for Road 1 and
Road 2 are identical, but the intensity functions are periodic. However, here we
compare data for Road 1 and Road 2 collected at different times within the period. In
particular, the data for Road 1 is collected during a time when the collision intensity
function for Road 1 is higher than Road 2. Consequently, it is likely that the data will
suggest that the underlying collision rate for Road 1 is higher than that for Road 2.
This could be misleading if it is not made clear that the two datasets were collected
over different times.
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Figure 5: Collision intensity function for Road 1 and Road 2. The solid vertical (orange) lines indicate
the time periods of data collection. The dashed vertical lines indicate when the behaviour of the collision
intensity function repeats.
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Figure 6 shows another example where the collision intensity functions for Road 1 and
Road 2 are identical. Here, the collision intensity functions have periodic behaviour
and trend. Whilst the data is collected during the same time within each period, in the
sense that they both correspond to times where the collision rates are highest within
each period, the trend in the collision rate intensity function could again produce
misleading conclusions.
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Figure 6: Collision intensity function for Road 1 and Road 2. The solid vertical (orange) lines indicate
the time periods of data collection. The dashed vertical lines indicate when the behaviour of the collision
intensity function repeats.

Given these examples, we suggest that the methods proposed in this document are
only used when the data used to compare two roads is collected over the same period
of time, or a single road between two time periods of equal duration and position in the
year. If this is not possible, it should be made clear in the conclusions that the time
periods are not the same and the possible implications of this taken into account.

6.4 Sensitivity analysis

It is important to consider the quality of the data being used to draw conclusions. For
example, it is possible that collisions occur that are not reported to the police and
therefore are not included in STATS19. It is also possible that road traffic estimates are
inaccurate, as the road network is a complex system which spans a large geographical
area. Biases may exist in any dataset so when comparing statistics between two roads
or road types, you should consider whether it is likely that any bias is inherent to
feature being compared (road or road type).

A sensitivity analysis could be conducted to consider how the collision and casualty
rates change, along with the associated confidence intervals and 𝑝-values, when the
collision, casualty, and road traffic estimates are varied by some percentage. For
example, if the analysis suggests that there is a difference in the underlying collision
and casualty rates, then a sensitivity analysis would determine the percentage change
in road traffic that leads to the opposite conclusions with similar 𝑝-values, or a much
smaller or larger 𝑝-value.
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6.5 How to interpret 𝑝-values

When undertaking a formal hypothesis test, we begin by assuming that the null
hypothesis is true and then calculate a 𝑝-value. A 𝑝-value is defined as the probability
of getting a test statistic at least as extreme as that observed, if the null hypothesis
was really true. Since the 𝑝-value is a probability, it will lie between zero and one.

A 𝑝-value close to zero suggests that it is unlikely to observe a test statistic as extreme
as the one we observed given the null hypothesis is true. So we have evidence to
reject the null hypothesis and can conclude it is unlikely that the null hypothesis is true.
Conversely, a 𝑝-value close to one suggests that it is not unusual to observe a test
statistic like the one we have given the null hypothesis is true. Here, we do not have
evidence to reject the null hypothesis but we cannot use the analysis as evidence that
the null hypothesis is true. The null hypothesis is simply the working assumption, and
hypothesis testing only allows us to look for evidence to reject it rather than accept it
as truth.

In our application, when comparing collision and casualty rates between roads, the null
hypothesis is that the underlying collision or casualty rates are the same. We guide
users of these proposed methods to be careful to not interpret a large 𝑝-value as
‘proof’ that this is the truth.

We have talked about 𝑝-values being close to zero or close to one, but what do we
mean by close? Traditionally, when undertaking a formal hypothesis test, practitioners
have compared the 𝑝-value to a threshold of 0.05. From this, they have either rejected
the null hypothesis when the calculated 𝑝-value is smaller than the threshold or not
when it is larger. However, it is now widely established that using a, somewhat
arbitrary, threshold to draw binary conclusions is not appropriate and that a 𝑝-value of
0.049 should not lead to such a different conclusion as a 𝑝-value of 0.051. [16, 17] We
recommend reporting 𝑝-values as they are calculated, rather than only in comparison
to a threshold, and interpreting them on a continuous scale from zero to one.

6.6 Practical significance

The methods proposed in this document can be used to quantify the amount of
evidence supporting statistical differences, but they cannot be used to determine
whether the size of the differences are meaningful. Small differences can be
statistically different, but this does not mean that they are practically different or
important, or that the difference is large enough to justify interventions. The size of any
differences, and the size of the difference relative to the rates, should be considered
carefully.

It is also important to remember that the size of a 𝑝-value is relative to the data
collection period. For example, if the underlying collision rates for two roads are fixed,
on average, we’d expect the 𝑝-value to decrease in size as the data collection period
increases. When small 𝑝-values are not observed, the expense, the time needed, and
the practical importance of the currently observed differences should be carefully
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considered to determine whether it is suitable to continue collecting data to be used as
evidence.

6.7 Other uses

In the Introduction we described that we have developed these methods to be used to
compare collision and casualty rates derived from data collected using the STATS19
data collection system. We anticipate them being useful to compare rates between
different geographical areas (such as between regions, roads, road types and road
sections) and between different time periods of a single geographical area (such as
comparing one year to the next). It may be suitable to also apply these methods to
other rate statistics, but we have not formally reviewed this yet.

The statistical model we propose for the number of collisions is a non-homogeneous
Poisson process. If, in some alternative application, it is still reasonable to assume that
events occur according to a non-homogeneous Poisson process, then it might be
suitable to apply the methods described in Section 3 to these statistics. Similar
considerations apply to the methods described in Section 4 and the compound Poisson
process assumption. One example that may be suitable, given a suitable data source,
is the rate of breakdowns given by dividing the number of breakdowns that occur by
the vehicle miles for a given road. The rate at which breakdowns occur may vary over
time, the breakdowns may be independent, and a single breakdown should only occur
at one time (when measured by an infinitely small period of time). However, the
suitability of the methods to this application still needs to be thoroughly investigated.

There may also be applications where these methods cannot be applied as presented
in this report. Consider using the methods developed to compare casualty rates for
severity-adjusted STATS19 casualty data.2 In particular, consider comparing adjusted
slight or serious casualty rates between two roads. Here, an alternative definition of
casualty rate would be needed, as casualties are not either slight or serious in the
adjusted data. Instead, the adjustments are estimates of how casualty severity may
have been recorded prior to the change in the STATS19 reporting system. In this case,
we are unable to analyse, for example, the distribution of casualties per collision as we
propose.

Comparing daylight collision rates against nighttime collision rates may be another
example where the methods cannot be used as presented here. In this example, the
collision process is no longer observed continuously due to the data collection period
alternating between daylight and nighttime over the data collection period. It may be
possible to amend the likelihood function given in Section 3.1 to address this, but this
would need further investigation.

Finally, we have presented methods for comparing rates for two roads. It is possible to
extend these methods to compare rates among more than two roads. Details are
given in Appendix C.

2https://www.gov.uk/government/publications/guide-to-severity-adjustments-for-reported-road-
casualty-statistics/guide-to-severity-adjustments-for-reported-road-casualties-great-britain
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7 Conclusions and next steps

In this document we have described statistical methods that we propose can be used
to compare road traffic collision rates and casualty rates derived from STATS19 data.
The methods we propose to compare underlying collision rates build on statistical
assumptions similar to those already used by the DfT and National Highways.
However, the method we propose can be used irrespective of the level of road traffic
observed.

To the best of our knowledge, a method to compare casualty rates did not exist. We
showed how the casualty rate depends on both the collision rate and the expected
number of casualties per collision. Therefore, we propose to test for a difference in
casualty rates by testing for both a difference in the underlying collision rates and a
difference in the underlying first moments of the distributions for the number of
casualties per collision. The conclusions of those two pieces of analysis can then be
used to determine whether the evidence suggests that there is a difference in the
underlying casualty rates.

We have included a worked example to demonstrate these methods, and in the
Guidance section we have described some factors to take into account when using
these methods.

While we have rigorously and carefully developed these proposed methods, they are
not yet finalised. Before establishing these methods as best practice across National
Highways, we welcome feedback and advice. In particular, we are keen to hear from
you if you uncover a problem with our proposed methods or can suggest an alternative
approach which would be a substantial improvement. Feedback can be given to
networkanalysisandstatistics@nationalhighways.co.uk by the end of August 2022,
after which the methods will be updated if necessary and finalised. In the meantime,
these proposed methods will be trialled in a comparison of collision rates and casualty
rates between different motorway types. This will test these proposed methods being
applied to real data.
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A Appendix: Methods for comparing collision rates

This section describes the methods proposed to compare collision rates.

A.1 Algorithm 1: confidence interval

A parametric bootstrap method for calculating a confidence interval for the underlying
collision rate. For Road 𝑖:

1. Calculate ̂𝛾𝑖 = 𝑁𝑖
𝑣𝑖

2. For 𝑠 = 1, … , 𝑆 where 𝑆 is sufficiently large

(a) Simulate 𝑛𝑠 ∼ Poisson( ̂𝛾𝑖𝑣𝑖)
3. Order the 𝑛𝑠 such that 𝑛(1) ≤ 𝑛(2) ≤ … ≤ 𝑛(𝑆)

4. The 100𝛼% confidence interval is given by

[
𝑛( 𝑆𝛼

2 )
𝑣𝑖

,
𝑛(𝑆(1− 𝛼

2 ))
𝑣𝑖

] . (11)

A.2 Calculating a 𝑝-value to compare two collision rates
To test hypotheses 4 we construct the likelihood ratio test statistic:

𝑡 = 2 (log(𝐿( ̂𝛾1, ̂𝛾2)) − log(𝐿( ̃𝛾, ̃𝛾))) , (12)
where ̃𝛾 = 𝑁1+𝑁2

𝑣1+𝑣2
is the maximum likelihood estimate of the collision rate under 𝐻0 and

̂𝛾𝑖 = 𝑁𝑖
𝑣𝑖

for 𝑖 = 1, 2, is the maximum likelihood estimate for the (different) underlying
collision rates under 𝐻1. The 𝑝-value can be estimated as follows:

1. Calculate ̃𝛾 = 𝑁1+𝑁2
𝑣1+𝑣2

2. For 𝑠 = 1, … , 𝑆 where 𝑆 is sufficiently large

(a) Simulate 𝑛1 ∼ Poisson ( ̃𝛾𝑣1) and 𝑛2 ∼ Poisson ( ̃𝛾𝑣2)
(b) Calculate ̃𝛾𝑠 = 𝑛1+𝑛2

𝑣1+𝑣2

(c) Calculate ̂𝛾1,𝑠 = 𝑛1
𝑣1

and ̂𝛾2,𝑠 = 𝑛2
𝑣2

(d) Calculate 𝑡𝑠 = 2 (log(𝐿( ̂𝛾1,𝑠, ̂𝛾2,𝑠)) − log(𝐿( ̃𝛾𝑠, ̃𝛾𝑠)))

3. Calculate ̂𝛾1 = 𝑁1
𝑣1

and ̂𝛾2 = 𝑁2
𝑣2

4. Calculate 𝑡 = 2 (log(𝐿( ̂𝛾1, ̂𝛾2)) − log(𝐿( ̃𝛾, ̃𝛾)))

5. Calculate 𝑝 = 1
𝑆 ∑𝑆

𝑠=1 𝕀𝑡𝑠≥𝑡.

Here, 𝕀𝑡𝑠≥𝑡 = 1 if 𝑡𝑠 ≥ 𝑡 and 0 otherwise. We propose to use 𝑆 = 1 × 106. To determine
if 𝑆 is large enough, the test can be run a second time to ensure that the 𝑝-value
returned is the same to three decimal places.
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B Appendix: Methods for comparing casualty rates

This section describes the methods proposed to compare casualty rates.

B.1 Algorithm 2: confidence interval

A parametric bootstrap method to calculate confidence intervals for the underlying
casualty rates. For Road 𝑖:

1. Calculate ̂𝛾 = 𝑁𝑖
𝑣𝑖

2. For 𝑠 = 1, … , 𝑆 where 𝑆 is sufficiently large

(a) Simulate 𝑛 ∼ Poisson( ̂𝛾𝑣𝑖)
(b) Sample {𝑌1, … , 𝑌𝑛} from {𝑋𝑖,1, … , 𝑋𝑖,𝑁𝑖

} with replacement

(c) Calculate 𝜁𝑠 = ∑𝑛
𝑗=1 𝑌𝑗
𝑣𝑖

3. Order the 𝜁𝑠 such that 𝜁(1) ≤ 𝜁(2) ≤ … ≤ 𝜁(𝑆)

4. Calculate the 100𝛼% confidence interval of the casualty rate of Road 𝑖 as

[𝜁( 𝑆𝛼
2 ), 𝜁(𝑆(1− 𝛼

2 ))] . (13)

B.2 Calculating a 𝑝-value for first moment

The bootstrap procedure proposed to calculate a 𝑝-value for testing Hypotheses 6 is
as follows:

1. Calculate 𝑑 = | 1
𝑁1

∑𝑁1
𝑗=1 𝑋1,𝑗 − 1

𝑁2
∑𝑁2

𝑗=1 𝑋2,𝑗|

2. For 𝑠 = 1, … , 𝑆 where 𝑆 is sufficiently large

(a) Randomly select 𝒜 = {𝐴1, … , 𝐴𝑁1
} from

𝒳 = {𝑋1,1, … , 𝑋1,𝑁1
, 𝑋2,1, … , 𝑋2,𝑁2

} and let {𝐵1, … , 𝐵𝑁2
} = 𝒳 𝒜

(b) Calculate 𝑑𝑠 = ∣ 1
𝑁1

∑𝑁1
𝑗=1 𝐴𝑗 − 1

𝑁2
∑𝑁2

𝑗=1 𝐵𝑗∣

3. Calculate 𝑝 = 1
𝑆 ∑𝑆

𝑠=1 𝕀𝑑𝑠≥𝑑

where 𝕀𝑑𝑠≥𝑑 = 1 if 𝑑𝑠 ≥ 𝑑 and 0 otherwise.
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C Appendix: Analysis for comparing more than two
roads

Suppose interest lies in comparing the collision rates between 𝑀 roads. Let 𝑁𝑖, 𝑣𝑖 and
𝛾𝑖 denote the number of observed collisions, road traffic, and the expected number of
collisions per 100 million vehicle miles for Road 𝑖 where 𝑖 = 1, … , 𝑀 . Then considering
the following hypotheses:

𝐻0 ∶ 𝛾1 = 𝛾2 = … = 𝛾𝑀
𝐻1 ∶ 𝛾1 ≠ 𝛾2 ≠ … ≠ 𝛾𝑀 , (14)

we can estimate the different collision rates under 𝐻0 and 𝐻1. Note, under the
alternate hypothesis, each of the collision rates can assume a different value. If the
null hypothesis is rejected, we cannot say for sure that each of the underlying collision
rates takes a different value, just that there is some difference amongst them. The
likelihood function for the data is:

𝐿(𝛾1, 𝛾2, … , 𝛾𝑀) = 𝑒−𝛾1𝑣1(𝛾1𝑣1)𝑁1

𝑁1!
𝑒−𝛾2𝑣2(𝛾2𝑣2)𝑁2

𝑁2! … 𝑒−𝛾𝑀𝑣𝑀(𝛾𝑀𝑣𝑀)𝑁𝑀

𝑁𝑀 ! . (15)

Under 𝐻0, the collision rate for all roads is given by ̃𝛾 = ∑𝑀
𝑖=1 𝑁𝑖

∑𝑀
𝑖=1 𝑣𝑖

which can be obtained

from maximising 𝐿( ̃𝛾, ̃𝛾, … , ̃𝛾). Under 𝐻1, the collision rates are given by ̂𝛾𝑖 = 𝑁𝑖
𝑣𝑖

for
𝑖 = 1, … , 𝑀 by maximising 𝐿( ̂𝛾1, ̂𝛾2, … , ̂𝛾𝑀). Confidence intervals for the collision rates
can be calculated using Algorithm 1. The 𝑝-value for testing (14) can be calculated by
substituting 𝐿( ̃𝛾, ̃𝛾) with 𝐿( ̃𝛾, ̃𝛾, … , ̃𝛾) and 𝐿( ̂𝛾1, ̂𝛾2) with 𝐿( ̂𝛾1, ̂𝛾2, … , ̂𝛾𝑀) in the method
described in Section 3.
Similarly, the expected number of casualties per collision can be compared across 𝑀
roads. Let 𝑋𝑖 denote the random variable for the number of casualties per collision for
Road 𝑖 for 𝑖 = 1, … , 𝑀 . Then, the hypotheses considered here are:

𝐻0 ∶ 𝔼[𝑋1] = 𝔼[𝑋2] = … = 𝔼[𝑋𝑀 ]
𝐻1 ∶ 𝔼[𝑋1] ≠ 𝔼[𝑋2] ≠ … ≠ 𝔼[𝑋𝑀 ]. (16)

Consider the null hypothesis where 𝔼[𝑋1] = 𝔼[𝑋2] = … = 𝔼[𝑋𝑀 ]. Then, under the null
hypothesis, if a large number of collisions were observed for each road, the sample
mean of each road should be close to the value of the mean casualties per collision of
all roads. Therefore, we calculate a 𝑝-value for testing (16) by considering the
distribution of the following test statistic:

𝑑 = 1
𝑀

𝑀
∑
𝑖=1

∣
∑𝑀

𝑖=1 ∑𝑁𝑚
𝑗=1 𝑋𝑖,𝑗

∑𝑀
𝑖=1 𝑁𝑖

− 1
𝑁𝑚

𝑁𝑚

∑
𝑗=1

𝑋𝑖,𝑗∣ . (17)

The 𝑝-value is calculated as follows:

1. Calculate 𝑑
2. For 𝑠 = 1, … , 𝑆, where 𝑆 is sufficiently large
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(a) Randomly select �̃�1 = {�̃�1,1, … , �̃�1,𝑁1
} from

𝒳 = {𝑋1,1, … , 𝑋1,𝑁1
, … , 𝑋𝑀,1, … , 𝑋𝑀,𝑁𝑀

} without replacement and
�̃�𝑖 = {�̃�𝑖,1, … , �̃�𝑖,𝑁𝑖

} from �̃� ⋃𝑖−1
𝑚=1 �̃�𝑚 without replacement for

𝑖 = 2, … , 𝑀 .

(b) Calculate 𝑑𝑠 = 1
𝑀 ∑𝑀

𝑖=1 ∣∑𝑀
𝑖=1 ∑𝑁𝑚

𝑗=1 𝑋𝑖,𝑗

∑𝑀
𝑖=1 𝑁𝑖

− 1
𝑁𝑚

∑𝑥∈𝒳𝑚
𝑥∣

3. Calculate 𝑝 = 1
𝑆 ∑𝑆

𝑖=1 𝕀𝑑𝑖≥𝑑.

Confidence intervals for the casualty rates can be obtained by modifying Algorithm 2.

In addition to the definition of 𝑑 given in (17), we considered an alternative, ̃𝑑 where:

̃𝑑 = sup
𝑖

∣
∑𝑀

𝑖=1 ∑𝑁𝑚
𝑗=1 𝑋𝑖,𝑗

∑𝑀
𝑖=1 𝑁𝑖

− 1
𝑁𝑚

𝑁𝑚

∑
𝑗=1

𝑋𝑖,𝑗∣ . (18)

It is thought that ̃𝑑 would be a suitable choice if there was concern that there exists a
large difference in the mean number of casualties per collision for a single road. In
contrast, 𝑑 should capture variation in the mean number of casualties per collision.
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